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Abstract This paper proposes a new approach to both characterize inter-robot trust
in multi-robot systems and adapt trust online in response to the relative performance
of the robots. The approach is applied to a multi-robot coverage control scenario,
in which a team of robots must spread out over an environment to provide sens-
ing coverage. A decentralized algorithm is designed to control the positions of the
robots, while simultaneously adapting their trust weightings. Robots with higher
quality sensors take charge of a larger region in the environment, while robots with
lower quality sensors have their regions reduced. Using a Lyapunov-type proof, it
is proven that the robots converge to locally optimal positions for sensing that are
as good as if the robots’ sensor qualities were known beforehand. The algorithm is
demonstrated in Matlab simulations.

1 Introduction

Multi-robot systems have the capacity to carry out large scale tasks efficiently. How-
ever, in order to be practical in real-world settings, multi-robot systems should be
robust to the deficiencies of individual robots. In this work we consider the prob-
lem of decentralized coverage control in the case when different robots may have
different, but unknown, sensing qualities. We propose an online, adaptive method
to compensate for the relative differences in sensing quality using only information
from the robots’ sensor readings. The robots estimate a “trust weighting” online,
which they use to adjust their sensing load.

The necessity for adaptive trust can be illustrated through several examples. First,
consider a situation in which a group of robots is deployed over a region to take
pictures following some disaster, such as an earthquake or building collapse. The
quality of sensors may degrade differently, for example, due to dust or cracks on the
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camera lens. Our algorithm accounts for the sensor quality and adapts trust weight-
ings accordingly. Even in the most benign situations, sensor creep can occur causing
uneven degradation in sensing performance. As sensor creep occurs in the group,
adaptive trust weightings adjust for the lower-performing robots and increases the
overall integrity of the group data collected.

A common strategy for coverage control, first proposed by Cortés et al., is based
on Voronoi tessellations of the environment ([2], [3]). This strategy drives all robots
to the centroids of their Voronoi cells, also referred to as the move-to-centroid con-
troller. It is known from previous research that the centroidal Voronoi configuration
has optimal properties for minimizing distances to points [4], as well as applications
in data compression [5]. Other extensions have been proposed with the weighted
Voronoi cell where the weightings account for differences in agent performance and
sensor qualities. Pavone et. al illustrated that using weighted Voronoi diagrams, also
known as Power Diagrams, the different cell weights allow for different agents to
take on varying sensing responsibility [12]. Another method considers the sensing
radius as the Voronoi weighting [13], which is useful in a heterogeneous group of
robots. Another application defined the weight as a measure of energy-efficiency of
a robot, allowing the group to compensate for low-energy robots [9]. Marier et. al
have used the Voronoi weightings to quantify sensor health of each robot, assign-
ing low-performing robots smaller areas of coverage and higher sensing costs ([10],
[11]).

While there is a wide variety of existing research on weighted Voronoi cells with
respect to robot performance, most assume the correct weightings are known a pri-
ori. In contrast, our work proposes an algorithm to adapt trust weightings online
using only comparisons between a robot’s sensor measurements, and those of its
neighbors. We integrate a measure of sensor discrepancy into a cost function for the
group, and use this to derive an adaptation law for each robot to change its trust
weightings online, while simultaneously performing a Voronoi based coverage con-
trol algorithm. We prove that the system converges to a local minimum of the cost
function using a Lyapunov proof. The weightings serve as an adaptive way to assess
trust between agents and improve the overall sensing quality of the group.

2 Problem Set-Up

Consider a set of n robots in a bounded, convex environment Q C RZ. A given point
in Q is denoted ¢, and let the position of the i-th agent be p; € Q. Prior cover-
age control algorithms use the standard Voronoi partition of the environment. Let
{V1,...,V,,} be the Voronoi partition of Q, with each cell satisfying the Voronoi def-
inition
Vi={q€Qlllg—pil <lla—pjll. Vij#i}.

For our work, we use the weighted Voronoi partition, also known as the Power
Diagram, with each weighting w; serving as the trust weighting for robot i. Let
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{W1,...,W, } be the weighted Voronoi partition of Q, with each cell satisfying
2 2 . .
Wi={q€Qlllg—pill>—wi<|lg—pjll>—wj, Vj#i}. (D

The trust weighting for robot i is w;, and it has the effect of increasing or reducing
the size of its associated Voronoi cell. Figure 1 illustrates the differences between a
weighted and standard Voronoi cell.

0

0 1 2 3 4 5 6

Fig. 1 The regular (blue) and weighted (green) Voronoi cell for a six-robot configuration. Here,
robot 2 has a lower weighting than the other robots and robot 6 has a higher weighting, which is
reflected in the changes in cell area.

In Figure 1, both the regular and weighted Voronoi cells are drawn to illustrate
the effect of the weightings on the Voronoi cell boundaries. As shown, the trust
weighting of robot two is lower than its neighbors, giving it a decreased cell area.
Conversely, the trust weighting of robot six is higher, giving it the increased area.

For our bounded region Q, we also define an integrable function ¢ : Q — R-g
to represent the areas of importance in the environment. Areas with large values
of ¢(g) are more important than those with small values, and all the robots have
knowledge of this function. When the robots do not know this function, techniques
have been developed to learn it online from sensor data [16]. We also introduce the
sensing function ¥%(p;,q) to model the relationship between sensor health and data
sensed by the robot. This function uses a quadratic approximation to model how the
health affects a sensor reading. Unlike ¢(q), ¥%(pi,¢q) may take different values by
different robots looking at the same point. For example, if robot i uses a camera for
sensing, ¥;(pi,q) may be the brightness of the pixel looking at ¢ while the robot is
located at p;. Robot i’s camera positioned at p; may have a different value for some
point ¢ than robot j’s camera positioned at p;.
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2.1 Locational Optimization

Before introducing our problem formulation, we will state the basic nomenclature
and results from Locational Optimization. A complete discussion can be found in
[3]. We can formulate a cost function for the sensing network over the area Q as

vy [ L
H(pssmn) = X [, 5lla= Pl 0(a)da @

Note that sensing cost increases as robots move further away from high values of
¢(q). Intuitively, a low value of s would indicate a good configuration of the
robots for coverage of the environment. Two other useful quantities to define from
this formulation are the mass and centroid of a Voronoi region V;, respectively, as

Jv,a9(q)dq
My

i

My, :/V¢(q)dq, and Cy, =

Given that ¢(g) is strictly positive, both My, and Cy, are analogous to physical
masses and centroids of the Voronoi cells. Although there is a complex dependency
between robot position and the geometry of the Voronoi cells, a surprising result
from locational optimization [4] is that

9
ap; = _/Vi@_Pi)(b(CI)dq = —My,(Cy, — pi). (3)

Equation (3) implies that the critical points of .7 correspond to the configurations
in which all robots are located at the centroid of their Voronoi cell, or p; = Cy, for
all i. Critical points can either correspond to local minimum, maximum, or saddle
points. Cortés introduced a gradient-based controller that is guaranteed to drive the
robots to the critical points corresponding to local minimum [3]. The controller we
use here also has this property. We restrict ourselves to only considering local min-
ima of 7 since global optimization of (2) is known to difficult (NP-hard). Thus,
when we refer to optimal coverage configurations, we mean locally optimal config-
urations. Variations on the control law which attempt to find global minima through
exploration are discussed by Salapaka et al. [14] and Schwager et al. [15].

Our formulation introduces trust weightings for each agent as an additional op-
timization variable. These weightings are used in calculating the weighted Voronoi
cell, also known as the Power Cell, for each agent, given in (1). We still wish to for-
mulate this as a locational optimization problem, and use a modified cost function
written

R o B TRTE S
P i) = X [ (la=pil’ = w) ola)dg,

where W; is the robot’s weighted Voronoi cell, and w; is the robot’s individual trust
weighting. Note that this is almost identical to the formulation in (2), except the
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integral is calculated over the weighted Voronoi cell instead of the standard Voronoi
cell. Additionally, we have added w; to the integrand, giving it the same form as the
weighted Voronoi cell definition (1).

Similar to the original cost function, we can also define the mass and centroid of
the weighted Voronoi cell, respectively, as

Jw,a9(q)dq
My

i

My, :/W ¢(q)dg, and Cy, =
From this, we can take the partial derivative of the cost function with respect to

agent positions, and we find

o
PP —/wv(q — pi)¢(q)dq = —Mw,(Cw, — i), (5)

which implies that critical points of % will also correspond to robots positioned
at the centroids of their weighted Voronoi cells [10]. Using (5), we will introduce
a controller similar to the Cortés controller that only moves the robots towards the
local minima.

2.2 Robot and Sensor Model

In this section, we describe our model for the dynamics of the robots and the quality
of the sensor. First, we assume that the robots have integrator dynamics, where

pDi = uj1, and

Wi = u;p. (6)

Here, u;1 is the control input to the robot, and u; is an adaptation law for the
weightings. We can equivalently assume there are low-level controllers in place to
cancel existing dynamics and enforce (6). We also assume that the robots will be
able to communicate with their neighbors and share information about data sensed.
The communication network is defined as an undirected graph in which two robots
share an edge of the graph if they share Voronoi cell boundaries. This is also known
as the Delaunay graph. We can then write the set of neighbors for any robot i as
A7 = {j|V;UV; # 0}. Additionally, robots are able to compute their own weighted
Voronoi cells, as defined by (1), which is a common assumption in the literature
([31, [101, [14]).

To model the effect of sensor health on performance, we consider a specific form
for the sensor function % (p;,q). This relates the impact of health as a quadratic
approximation of the actual function near points of comparison. While in practice
it is not necessary to know %;, for our convergence proofs we assume that 9; can be
approximated by

%(pi,g) =—a(lg—pill> —hi), @)
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where £; is some health offset indicative of sensor performance and « is some scal-
ing factor. Note that this equation for ¥;(p;,q) shares a similar structure with the
weighted Voronoi cell definition (1). It is not necessary for the robots to know #;
or ¢ for a given sensor so long as %(p;i,q) can be measured from the robot’s sen-
sor. For example, imagine that % (p;,q) conveys pixel brightness captured from a
camera. While the robot may not know the camera health, it is still capable of ob-
taining pixel brightness. The o and A; variables shape the approximation of how the
health affects the quality at some point g from p;. We believe this is a valid model
for sensor quality, as the performance of sensing some point g decreases as ¢ moves
away from the sensor at p;. This also allows different sensors to have a different per-
formance. We also note that %(p;,q) can be extended to any 2D sensor model, not
just cameras. Another example to consider is an implementation where the robots
have lidar sensors to map an environment topography, and ¥ (p;,q) is the elevation
measurement at point g for the robot’s sensor positioned at p;.

3 Decentralized Control

The main goals of our work are to 1) drive the robots to an optimal coverage config-
uration in the environment and 2) adjust trust weightings to account for variations
in sensing performance. To accomplish these goals, we propose one control law to
change the positions of the robots and one adaptation law to change the weightings
of the robots. We will then prove that both of these control laws will drive the robots
to converge asymptotically to a stable equilibrium configuration corresponding to a
local minimum of the sensing cost function.
With respect to the position controller, we will use the control law

pi = ui1 = kp(Cw, — pi), ¥

where k, is a positive proportional gain constant, and Cy; is the centroid of the
weighted Voronoi cell. This controller is commonly referred to as the move-to-
centroid control law, first proposed by Cortés ([3]) and extended and modified in
([11,[10], [16]). While the original control law used the unweighted Voronoi cell
centroid, Cy;, it does not impact the performance of the controller to use the weighted
Voronoi centroid, Cy; ([10], [13]).

For the weightings, we propose a new adaptation law

_ K Joy, ¥i(Pisac)dg+ [y, ¥i(Pjs qc)dq
Wi =Uj2 = m Z (/b” %(l’u%)dq— ) 9

ijest;

where k,, is a positive proportional gain constant, and b;; is the cell boundary line
between neighboring agents i and j. Essentially, this compares values of sensing
data between two neighbors over shared points along their boundaries. Figure 2
illustrates the shared boundary.
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Fig. 2 For neighbors i and j the green line highlights their shared Voronoi cell boundary. In the
weightings adaptation law, sensing data is compared along points in this boundary.

The control law u; 1 is referred to as the positional controller, and the control law
u; 2 is the weightings adaptation law. The behavior of the system with these control
laws is formalized in the following theorem.

Theorem 1. Using the positional control law (8) and the weightings adaptation law
(9), the robots converge to an asymptotically stable local minimum of the sensing
cost function # (p1, ..., PnsWi,---,Wn) (4). Furthermore, the positions of the robots

satisfy
lpi—Cwll =0 ¥ icn, (10)

and the weightings satisfy
(W,‘*Wj)—)(hifhj) N i,j. (11)

Proof. We will first show that the controllers drive the system to stable equilibria by
using the cost function % as a Lyapunov function candidate. We will then introduce
a new Lyapunov function to show that the adaptation law for the weightings, u;,
also drives the weightings to the set defined in (11).

Consider our cost function # in (4) as a Lyapunov-like function. Taking the time
derivative of this function yields

- o] .
W = Z/ (g—pi)" ¢(q)dgp;+ Z/ 59 (@)dgwi.
i=17Wi i=1/Wi
We can break this expression into two parts as
. n o T . n 1
#i=Y | @=p)"o@dap, 2= Y, My
i=1"Wi i=1

Plugging in our adaptation law u; > (9) for w;, #5 simplifies as

fb,j Yi(piq)dq — fb,-j 7/(1’17‘1)@)

. 1k, .
%ZZZMfMW.Z< 2

Y5 ¥ [ i) - v(rr9)dg

i=1 T je/bij
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Now consider #4. By plugging in our controller u; | (8) for p;, the time derivative
of the cost function becomes

W= — 21 [ (a=p"o(a)dalky(Co— i)

=Y —k,My,|[Cw, — pil|* <0. (12)
=1

L

Using La Salle’s Invariance Principle [8], the robots converge to the largest invari-
ant set such that % = 0. From (12), when p; = Cy, for all i, then # = 0. From our
control law (8), when p; = Cy,, p; = 0 for all i, therefore the centroidal Voronoi con-
figuration p; = Cy; V i is the largest invariant set. By La Salle’s, the robots converge
to the centroidal configuration, proving (10) from Theorem 1.

In order to prove (11) from Theorem 1, consider a second Lyapunov-like func-
tion,

—_

V=Y §||Wi—hi|\2

i=1

with time derivative

vV

(wi —hi) W

|
™=

ky,

2My; |

(wi —h)"

I
™=

Il
-

¥, [, o) - viosalda

To simplify this expression, we notice from (7) that

%(pia) = Y(pja) = = (llg— pill* = hi = lla = pjlI* + 1))
However, we are evaluating point g at the cell boundary, so it will satisfy (1)

2
|

lg—pill* = wi=llg—pil* —w;.

Combining these expressions, we find
%(pi,q) —V(pj.q) = —ot(wi—wj—hi+hj)

The difference in sensing quality is constant between two neighboring robots along
the boundary b;;. Thus, when we plug this into our expression for ¥, we obtain

. n k .
V=Y (wi— )T —a(w~—w~—h~—|—h~)/ dq
; i i 2MWI' j;{ i j i J by

< ok
= Z(Wl-fhi)TzM;; Z (Wlfhjfwl+hl)dl/ (13)
i i jes;
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where d;; is the length of the boundary b;;. It is advantageous to re-write this ex-
pression in matrix form. To do so, we will define

1
wi—h y, 00
W= y M7l = 0O . 0 s and
Wy —hy 0 0 ﬁ
L Z d“Lij L _dij fOI’jGJI{
B jeM i _ Y o otherwise

Hence from (13) we can write the derivative of the Lyapunov function in matrix
form as
V = —ak,w M~ Liv.

M~ is a diagonal matrix of positive entries and L is the weighted Laplacian of the
neighbor graph, which is known to be positive semi-definite ([6], [7]). It can be
shown that the product M~'L is positive semi-definite, which allows us to state

¥ <0.

To complete the proof, we use La Salle’s Invariance Principle to find the largest
invariant set such that % = 0. The invariant set is defined as when W is in the null
space of L. From graph theory, we know this occurs when W is a vector of identical
entries, i.e. Ww; = w; for all neighbors. This can also be written as the set of all w;
such that

W,'—hi:Wj—/’lj Vi,jen

or
(wi—wj) = (hi—hj) Vi jen,

proving (11) from Theorem 1. O

Remark 1. This proof shows that using the controller u; > (9), our weightings con-
verge to a set of values relating the robot trust weightings back to sensing perfor-
mance. Overall, the convergence of the weightings implies they will reach static
values, which in conjunction with the move-to-centroid controller means that the
robots will find final locations in the environment. Although changing the weight-
ings creates a change in boundaries and thus a change in the cell centroids, the
weightings eventually converge to an invariant set, which means the positions of the
robots will eventually reach their centroids.

Remark 2. Theorem 1 guarantees convergence to a relative difference between the
weightings and the health factor, not the direct health value. This is as expected,
since from our problem setup, trust is a relative notion among neighboring agents
with no external authority. Additionally, weighted Voronoi cell boundaries are cal-



10 Alyssa Pierson and Mac Schwager

culated from a relative difference (1), as any constant offset would be canceled out
on either side.

Remark 3. The convergence of the robots to locally optimal locations in the environ-
ment is as good as if the correct robot trust weightings were known beforehand. If
the weightings are correct, it implies all robots will agree in compared sensing data
values. In this case, w; goes to zero (9), while the positional controller p; remains
the same (8).

Remark 4. One simplification of the weightings adaptation law is to compare the
sensing values between neighbors at any subset of points in b;;, including a single
point, instead of across the entire boundary. The motivation to compare sensing
functions at fewer points, as illustrated by Figure 3, is that it may be quicker and
computationally easier than the boundary calculation, albeit less robust. Corollary
1 shows that this simplification of any subset of points still maintains convergence
of the weightings to an invariant set, as well as convergence of the location of the
robots to their centroids.

Fig. 3 For neighboring robots i and j, the weighted midpoint ¢, (green) lies along the shared
Voronoi boundary (blue).

Corollary 1. The claims of Theorem I also hold true for the adaptation law

¥ f— . — k‘/v o . P . .
Wi = Uiz = 2MW,- j;V(%(ptaQC) Yj(pj7qc))a (14)

where q. is any point in b;;.

Proof. Using (14) in place of the previous adaptation law (9) and noting that the
weighted graph Laplacian becomes the normal graph Laplacian [6], the same proof
and arguments hold from Theorem 1. O

4 Simulation Results

Simulations were carried out in a Matlab environment. The controllers in (8) and
(14) were applied to a group of n = 10 robots. Riemann sums were used to approx-
imate integrals in calculating the controllers, the weighted Voronoi cell masses and



Adaptive Inter-Robot Trust for Robust Multi-Robot Sensor Coverage 11

centroids, and the cost function (4). The environment Q was defined as a square
region. The information density function ¢(g) was defined as constant in Scenario
A and B, and as a sum of two Gaussian functions, with peaks in the upper right
quadrant and lower left quadrant in Scenario C.

All robots are initialized with random positions, and three scenarios are included
in this paper. Scenario A starts with equal weightings but unequal sensing perfor-
mance. Scenario B starts with unequal weightings but equal sensing performance.
Scenario C starts with randomized weightings and health factors for all agents.

4.1 Scenario A

In this scenario, all robots start with equal trust weightings. However, robot i = 2 has
a lower sensor health sy, which implies it is not performing at its expected ability.
The initial weighting and health values are

wo = [1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0, 1.0],
ho = [1.0,0.2,1.0,1.0,1.0,1.0,1.0,1.0,1.0, 1.0].

Over the course of the simulation we notice that the weighting w; decreases as a
result of its lower health. Figure 4 shows a comparison between final configurations
with and without the adaptive trust weightings, while Figure 5 shows the global
sensing cost and trust weightings over time.

® ) b
()

) " "

o ) b

L L | L
1 2 3 4 5 6

Fig. 4 Final configurations without adaptive weightings (left) and with adaptive weightings.

We can see in Figure 4 that without adaptive trust weightings, the lower-health
robot is able to get an equal share of the environment sensing load. With the adap-
tive weightings, its contribution is reduced to improve the overall group quality. To
verify the system converges as predicted by Theorem 1, see Figure 5.
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Fig. 5 [Left] Global sensing cost of the system over time. [Right] Convergence of weighting values
over time. Values for wy are shown in green, while the rest of the group is shown in blue.

The values of the global cost function decrease over time, a result of the move-
to-centroid controller u; 1. In addition, by looking at the new weighting values, we
see that the weight w; did indeed drop in value, while the other weights remained
equal. The final values for the weightings taken after 100 seconds were

ws = [1.07,0.27,1.07,1.07,1.07,1.07,1.07,1.07,1.07,1.07),
w—h = [0.07,0.07,0.07,0.07,0.07,0.07,0.07,0.07,0.07,0.07].

Consistent with our predictions, the difference between w; and A; is equal in value
for all robots. Note that the values of w; do not converge to the exact values of #;,
only the difference.

4.2 Scenario B

To illustrate the converse of Scenario A, we create a situation in which the robots are
performing equally, but robot i = 3 has been initially assigned a lower trust weight-
ing than the rest of the group. We show that the weightings will eventually converge
to the same value when the sensing healths are equal. Initially, the weightings and
sensing healths were assigned to be

wo = [1.0,1.0,0.2,1.0,1.0,1.0,1.0, 1.0, 1.0, 1.0],
ho = [1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0].

As we have stated previously, it is not necessary in practice to know the sensor health
h;, but we will assign these values in simulation to show functionality. With all of
the sensing health values set equal, we expect that the weightings will coverage to
equal values as well.
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Fig. 6 Final configurations without adaptive weightings (left) and with adaptive weightings.

Figure 6 shows the final configurations with and without adaptive weightings. By
using the adaptive weightings, the incorrectly-assigned trust weighting is corrected
at robot three is given a more-equal share of the sensing load. Figure 7 shows the
cost plot and the weightings over time.
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Fig.7 [Left] Global sensing cost of the system over time. [Right] Convergence of weighting values
over time. Values for w3 are shown in green, while the rest of the group is shown in blue.

From the plot of the weightings, we see that w3 moves towards the other weights
over time. The final weightings values after 100 seconds were

wy = [0.92,0.92,0.92,0.92,0.92,0.92,0.92,0.92,0.92,0.92],
w—h = [—0.08,—0.08, —0.08, —0.08, —0.08, —0.08, —0.08, —0.08, —0.08, —0.08].

As predicted, with all health values equal, the weightings converge to equal values.
Note that even though the health hasn’t changed, the values of the weightings de-
crease. From Remark 2, we know that the decrease is not important, so long as the
difference between all agents is equal. It makes no difference on the Voronoi con-
figuration if the weightings are all 0.92 or 1.0, because the relative difference is the
same.
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4.3 Scenario C

The previous two scenarios used simple initial values to show in detail how the
weightings adapt over time. In this scenario, the weightings and the sensing health
factors were initialized as random numbers drawn from the uniform distribution
over [0, 1] to illustrate more complex functionality. The initial values were:

wo = [0.66,0.63,0.29,0.43,0.02,0.98,0.17,0.11,0.37,0.20),
ho = [0.49,0.34,0.95,0.92,0.05,0.74,0.27,0.42,0.55,0.94].

Similar to before, the simulation was run in Matlab, with initial and final configu-
rations shown in Figure 8. We expect that our weightings controller will drive the
difference w; — h; to equal values amongst the group while still maintaining cover-
age control. From Figure 8, we see the algorithm is able to accomplish a centroidal
Voronoi configuration from randomized initial positions.

Fig. 8 Initial (left) and final configurations of the robots.

To verify that this indeed is a better final position, we can see the cost function
decreases to a final value in Figure 9. We also observe that the final values of w — A,
taken after 100 seconds, are

w—h = [-0.15,—0.15,—0.15,—0.15,—0.15,—0.15,—0.15,—0.15,—0.15, —0.15].

These values show convergence to the common invariant set described in Theorem
1. Figure 9 shows that all of these weightings relative to their respective health
factor converge over time. Note that this plot is the relative difference w — h, which
is different than what is plotted in Scenario A and B.
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Fig. 9 [Left] Global sensing cost of the system over time [Right] For each agent, the difference
w — h is plotted, showing convergence to a common value.

We plot the difference w — & to better illustrate the convergence, as plotting the
actual values of the weightings would seem random and erratic. From this, we see
all values coming into agreement, as predicted by (11). In conjunction with the
decreasing cost function, we can verify that the final position is locally optimal and
stable.

5 Conclusion

In this paper we have described a method for quantifying robot-to-robot trust in a
multi-robot coverage control application. Specifically, we allow the robots in the
group to compare values of data sensed with their neighbors, and using an adaptive
control law, adjust their weightings to better account for their performance. These
trust weightings adjust the placement of the weighted Voronoi boundaries between
neighboring robots. By controlling the weights on each Voronoi cell, we are able
to adjust a robot’s cell size relative to its neighbors, which is analogous to creating
trust relationships between neighboring robots. The weightings adaptation law was
proven to converge to an asymptotically stable invariant set, which is shown to be as
good as knowing the health factors directly. The positional controller was similar to
positional controllers in previous works in that it moved robots towards the centroid
of their Voronoi cells.

Our method can be used to incorporate the robot sensor degradation into the over-
all decentralized algorithm while maintaining stability and performance. This will
provide robustness in real-world coverage control applications. First, it can adjust
for variations in the degradation of sensing performance caused by external factors,
such as dust on a camera lens. Second, it provides robustness against sensor creep
over long periods of time. Finally, in applications where there may be malicious
robots in the group, these trust weightings can provide insight into identifying and
mitigating against malicious robots. Future extensions of this work aim to further
investigate the relationship of trust and adversarial robots. This paper provides the



16 Alyssa Pierson and Mac Schwager

framework for quantifying trust, but additional steps are still needed to ensure that
the impact caused by adversarial robots is limited. Another extension is to apply
this concept of trust to applications beyond coverage control, such as multi-agent
mapping, target tracking, or search.
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