
Distributed Target Tracking in Cluttered Environments with
Guaranteed Collision Avoidance

Alyssa Pierson and Daniela Rus

Abstract— We propose a distributed, online algorithm for a
group of pursuer agents to track a target through a cluttered
environment. The pursuer agents must avoid collision with the
obstacles at all times. We introduce the Obstacle-Aware Voronoi
Cell (OAVC), a modified Voronoi tessellation that dynamically
weights the boundaries between agents and obstacles such
that an agent’s OAVC is tangent but never intersecting the
obstacle. The agents plan their control actions within their
OAVC, guaranteeing collision avoidance among themselves and
other agents. We demonstrate that by using tools from Voronoi-
based coverage control, the pursuers successfully track a target
given only an estimate of its position. Simulations conducted in
Matlab demonstrate the performance of our algorithm.

I. INTRODUCTION

In this paper, we propose an algorithm for a group of

agents to track a target through a cluttered environment

while simultaneously avoiding obstacles. To guarantee col-

lision avoidance, the agents calculate a safe area within

the environment, and plan all actions within that safe area.

We introduce the Obstacle-Aware Voronoi Cell (OAVC), a

modified Voronoi tessellation that generates a safe, collision-

free area. Using a position estimate of the target to generate a

probability density across the environment, the agents calcu-

late and move towards the centroid of their OAVC, allowing

the agents to move closer to the predicted location of the

target while avoiding collisions with obstacles and other

agents. This algorithm builds upon the author’s previous

work, wherein a group of agents cooperatively tracked an

evader through an environment over time [1].

Our algorithm is pertinent to a handful of emerging appli-

cations, such as search and rescue, security and surveillance,

and robotic videography. Consider, for example, the target is

a suspected criminal, and the agents are surveillance drones.

The agents must track the suspect while avoiding buildings,

bridges, trees, and other environmental obstacles. If the target

enters a cluttered region, our algorithm allows the agents

to pursue the target while avoiding the obstacles. Another

application is tracking a lost person or animal in a forested

area. In a previous work [1], we considered the problem

of distributing the pursuers around a no-fly zone boundary

while tracking an evader. In that paper, we utilized tools from

This work was supported by the Office of Naval Research (ONR) Grant
N00014-12-1-1000 and Toyota Research Institute (TRI). Toyota Research
Institute provided funds to assist the authors with their research but this
paper solely reflects the opinions and conclusions of its authors and not
TRI or any other Toyota entity. We are grateful for this support.

The authors are with the Computer Science & Artificial Intelligence
Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139,
USA [apierson, rus]@mit.edu

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

(a)

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

(b)

Fig. 1: Simulation of target tracking for n = 10 pursuers

(triangles) in an environment with m = 30 circular obstacles.

The shaded regions are the OAVC of each agent, and the

target estimate is given by the red X’s, with the true position

denoted with a green X.

Robust Model Predictive Control (MPC) to ensure collision-

free paths for the quadrotor pursuers, and tools from Voronoi-

based coverage control for distributing the agents about the

no-fly zone boundary. When the evader was in free space, we

assumed the pursuers had perfect knowledge of the targeted

evader. For this work, the agents only have an estimate of the

target’s position, even in free space. This allows us to unify

the control strategy to a single policy tracking the target in

free space and inside an obstacle.

While there has been extensive research on path planning

and obstacle avoidance for mobile robots [2], [3], most algo-

rithms rely on simple approximations of the robot dynamics

[4], [5], [6], [7] . If the underlying robot is highly nonlin-

ear, or subject to uncertainties, these approximations may

result in controller instability and collision with obstacles.

In [8], [1], a robust MPC using linear matrix inequalities

(LMIs) demonstrated robust performance under modeling

uncertainties and measurement noise. Combined with a path

planning algorithm, collision avoidance in the presence of

uncertainties was guaranteed. Here, we incorporate the colli-

sion avoidance into path planning by restricting the area the

agent uses to choose its path.

To generate this safe-area for each agent, we draw inspira-

tion from Voronoi-based coverage control. A Voronoi-based

coverage strategy, first proposed by Cortés et al. [9], [10],

drives all robots towards the centroids of their Voronoi cells.

Also known as the move-to-centroid controller, this strategy

can be extended beyond coverage control to other multi-

agent problems. One application is tracking intruders within

2017 International Symposium on Multi-Robot and Multi-Agent Systems (MRS)
University of Southern California, LA, USA, December 4-5, 2017

978-1-5090-6309-3/17/$31.00 ©2017 IEEE 83

an environment [11], [12], however, these do not consider

obstacles in the environment and cannot guarantee collision

avoidance. Other works have used a Voronoi-based strategy

for multiple cooperative pursuers against both a single evader

[13], [14], [15], [16] and multiple evaders [17], but again do

not account for obstacle avoidance.

Our algorithm utilizes a modified Voronoi cell to guaran-

tee collision avoidance between agents and obstacles. One

approach is to create a buffer zone within the Voronoi cells,

such that any robot located on the boundary of its cell

cannot collide with its neighbors [18], [19]. Here, these

modified Voronoi cells can be used as safety regions for

agents planning actions. The buffered cells in [18] and [19]

use a static weighting to create the buffered zone in each

cell - useful when the offset between agents is known and

there are no obstacles. In contrast, our algorithm uses a

dynamic weight between an agent and obstacles such that

the boundary of the cell is tangent to the obstacle.

In this work, the agents use a modified Voronoi partition

to divide the environment up into convex, safe regions. This

partition is designed to dynamically modify the boundary

calculation based on the obstacle positions, as well as divide

the region among multiple agents. An estimate of the target’s

position is given to the agents, which is used to define a

configuration cost of the agents. By choosing a controller

that decreases the configuration cost, the agents are able

to successfully track a target as it moves throughout the

environment. The remainder of this paper is organized as

follows. In Section II, we present our problem formulation.

Section III presents our tracking strategy. We demonstrate

the performance with Matlab simulations in Section IV, and

present our conclusions in Section V.

II. PROBLEM FORMULATION

Consider a bounded, convex environment Q ⊂ R
2, with

points in Q denoted q. For n agents, we denote the positions

pi ∈ Q, for i ∈ {1, ..., n}. We assume all agents have

integrator dynamics,

ṗi = ui, (1)

where ui is the desired control input for agent i. The agents

track some target, T , through the environment. We denote

the position of the target as pT . The agents may not know

the exact location of the target, and instead use an estimated

position of the target. We define the position estimate with a

probability density function φT (q), where the value of φT (q)
represents the probability of target T being at location q.

While φT (q) may take many forms, we assume φT (q) > 0
and that over the environment,

∫
Q
φT (q)dq = 1.

Each agent must also avoid obstacles in the environment.

The agents may not know the location of all obstacles

in the envrionment, but we assume that nearby obstacles

can be detected. We represent the m static obstacles in

the environment as circles, with each obstacle centered at

position zj with radius Rj . We refer to the entire set of

obstacles as Z = [..., zTj , ...]. Obstacles are allowed to have

varying radii, and may overlap, allowing for the creation of

larger, non-convex obstacles from a series of overlapping

circular obstacles. For each obstacle, let ZAj be the area it

occupies in the environment, defined

ZAj
= {q ∈ Q | ‖q − zj‖ ≤ Rj} .

We also define ZA as the total area occupied by all obstacles,

calculated as ZA =
⋃m

j=1ZAj
.

A. Distributed Tracking

In this problem, we want the pursuers to track a target

in a distributed fashion while avoiding collisions between

obstacles and other agents. To guarantee collision avoidance,

consider some convex safe area Ai for each pursuer. Given

this safe area Ai, the pursuer must choose some control

strategy ui to remain inside Ai and move towards the

estimated position of the target. First, we will introduce a

strategy for a pursuer to choose ui given an area Ai. Later,

we present our formulation of Ai using a modified Voronoi

cell and show its relation to Voronoi-based coverage control.

For each agent, we introduce a configuration cost Hi to

assess its position tracking a target within its area Ai. For an

agent at location pi tracking a target with probability density

φT (q), we define

Hi =

∫

Ai

‖pi − q‖2φT (q)dq.

Intuitively, if the pursuer doesn’t know the exact location of

the target, they should move towards the most likely location

of the target. The configuration cost Hi is low if the pursuer

is near high values of φT (q), and the cost increases when

the pursuer is further away from the target. If the area Ai

is static and φT (q) does not evolve over time, one control

policy to decrease the agent’s cost Hi is to move towards

the centroid. Analogous to a physical mass and centroid, we

define

MAi
=

∫

Ai

φT (q)dq, and CAi
=

1

MAi

∫

Ai

qφT (q)dq. (2)

It can be shown that a local minimum of the configuration

cost Hi occurs when the agent is located at the centroid of

its safe area Ai. To move the agents toward their centroid,

we propose the following controller:

ṗi = ui = ki (CAi − pi) , (3)

where ki > 0 is a proportional gain and CAi is the

centroid of the OAVC. Proposition 1 demonstrates that by

moving towards its centroid, a pursuer can decrease its local

configuration cost and converge upon a static location.

Proposition 1: Using the control strategy in (3), the pur-

suers converge to the centroid of their safe area,

‖pi − CAi
‖ → 0. (4)

Proof: To prove (4), we invoke LaSalle’s Invari-

ance Principle [20]. First, we introduce a continuously-

differentiable Lyapunov-like function Vi that takes the form

of the coverage cost function Hi. We show that all trajec-

tories of the system are bounded, and that the function is

84

non-increasing, thus V̇i ≤ 0. We then use LaSalle’s to prove

the claims of the proposition. Consider the function

Vi =
∫

Ai

‖pi − q‖2φT (q)dq,

with derivative

V̇i = ∂Vi
∂pi

ṗi.

Using tools from locational optimization [21], it can be

shown that
∂Vi

∂pi
= −MAi

(CAi
− pi) .

Substituting our controller (3) into V̇i yields

V̇i = −MAi
(CAi

− pi)
T
ki (CAi

− pi) ,

= −kiMAi
‖CAi

− pi‖2 ≤ 0.

Given that the derivative V̇i ≤ 0, we see the trajectories for

robots pi(t) are bounded. To complete the proof, we find the

largest invariant set within the set defined by V̇i = 0. By

inspection, this occurs when pi = CAi
, and from our control

law (3), this itself is an invariant set. Therefore, by LaSalle’s

Invariance Principle, we have that

pi(t)→ CAi
as t→∞,

proving (4) from Proposition 1.

Proposition 1 provides a basic strategy for a single agent

given a static, convex safe area Ai and probability density for

the target φT (q). Under these assumptions, a good strategy

is to move towards the centroid of its safe-area, guaranteeing

it does not collide with any other obstacles or agents in the

environment. In the following sections, we propose using

tools from Voronoi-based coverage control to generate the

safe area. First, we summarize key results from locational

optimization, then present our modified Voronoi cell to use

in environments with obstacles.

B. Locational Optimization

In the previous section, we presented a general formulation

for a pursuer seeking a target given a pre-assigned safe region

and probability density function for the target. For a convex

safe area Ai, by moving to the centroid CAi
, the pursuer

decreases its individual configuration cost while avoiding

collisions. We propose using a modified Voronoi cell as the

safe area for each agent. In the absence of obstacles, our

modified Voronoi cell is equivalent to the standard Voronoi

partition. Using a Voronoi tessellation, we can consider a

combined configuration cost of the group. Here, we summa-

rize results from locational optimization stating the agents

reach a local minimum of the combined configuration cost

using a move-to-centroid control law. Consider the standard

Voronoi partition, defined

Vi = {q ∈ Q| ‖q − pi‖2 ≤ ‖q − pj‖2, ∀j 	= i, i, j ≤ n}.
In the absence of obstacles, we see that if agents start

within their cell and only plan actions inside Vi, they avoid

collisions with all other agents. We write the configuration

cost for the group of agents

H(p1, ...pn) =

∫

Q

min
i∈{1,...,n}

‖q − pi‖2φT (q)dq. (5)

Given the properties of the Voronoi partition, the configura-

tion cost function becomes

H =
n∑

i=1

∫

Vi

‖pi − q‖2φT (q)dq.

We also define the mass MVi and centroid CVi of the Voronoi

cell as calculated in (2). Despite the complex dependency

between the position of the robots and the geometry of the

Voronoi cells evolving over time, a surprising result from

locational optimization [21] is that

∂H
∂pi

= −
∫

Vi

(q − pi)φT (q)dq = −MVi
(CVi

− pi) ,

which implies the critical points of H correspond to the

robots positioned at the centroids of their Voronoi cells,

or pi = CVi
for all i. Critical points can correspond to

either local minima, local maxima, or saddle points. Cortés

introduced a controller that drives robots only to the local

minima critical points of the cost function [9],

ui = kp (CVi
− pi) . (6)

In an environment with no obstacles, the move-to-centroid

controller provides a good strategy to move towards a target

with a known probability density function. When the density

function is time-varying, it is possible to maintain coverage

[11], [12], [22] with modifications to the controller and

restrictions on the properties of φ(·). Using these results, we

propose a framework that uses a move-to-centroid controller

with modified Voronoi cells that incorporate obstacles in the

environment.

C. Obstacle-Aware Voronoi Cells

For environments with obstacles, one approach may be to

treat obstacles as static agents in the environment. However,

the standard Voronoi partition may intersect obstacles near

the agent. Calculating a Buffered Voronoi Cell [19] creates a

conservative bound on the safe area, but does not guarantee

collision avoidance with larger obstacles. While collision

avoidance could be incorporated on a secondary controller

for the agent, it is desirable to have a unified control

law. We propose a modified Voronoi cell formulation that

differentiates between obstacles and other agents within the

environment. When an agent computes its Voronoi boundary

between itself and another agent, it calculates the boundary

using the standard partition. For obstacles, the agent dynami-

cally assigns weights such that the boundary of their modified

Voronoi cell is tangent to the obstacle boundary. We call this

an “Obstacle-Aware Voronoi Cell” (OAVC), defined

Ai = {q ∈ Q | ‖pi − q‖2 ≤ ‖zj − q‖2 − wij , j ∈ Z and

‖pi − q‖2 ≤ ‖pk − q‖2, k ∈ {1, ..., n} 	= i}
(7)

85

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

Fig. 2: Comparison of our Obstacle-Aware Voronoi cells

(green) with regular Voronoi cells (red dash) around obsta-

cles (blue circles). Our OAVC provides a larger safe region,

but does not intersect obstacles at close proximity.

where wij is a dynamic weight that places the boundary line

tangent to the obstacle boundary, defined

wij = 2Rj‖pi − zj‖ − ‖pi − zj‖2.

Note that as the agents move, the value of wij changes, but

the boundary line will always be tangent to the obstacle.

Furthermore, agents only need to know the locations and

radii of nearby obstacles to calculate their OAVC. Similar to

the dynamic sensing radius proofs in [9], it can be shown that

obstacles beyond a certain distance of the furthest vertex will

not influence the boundary of the cell. From this, we assume

that agents can sense the obstacles and other agents needed

to generate their OAVC, but do not necessarily need the full

position information of all obstacles and agents.

The purpose of the dynamic weight in the OAVC is to

create the largest possible convex cell for the agent around

static obstacles. By maintaining a convex cell, the agent can

utilize a move-to-centroid controller and guarantee it will not

collide with other agents or obstacles. Figure 2 illustrates

a comparison of the standard Voronoi partition (red dash)

versus our modified partition (green). In the figure, note that

when an agent (triangle) is far away from an obstacle (blue

circle), the Voronoi cell does not utilize all available free

space for the agent. When an agent is near an obstacle, the

standard Voronoi cell may intersect an obstacle. In contrast,

our OAVC provides a larger area for agents far away from

obstacles, yet ensures the boundaries never intersect nearby

obstacles. Between two agents, both the regular Voronoi

cell and our OAVC have the same edge. In the absence of

obstacles, our partition in (7) reduces to the standard Voronoi

partition among agents.

III. TRACKING STRATEGY

The previous section summarized our problem formula-

tion, and presented some basic results on locational opti-

mization. As stated, in the absence of obstacles, the move-

to-centroid controller would converge to a locally-optimal

configuration around the target. In this section, we first

present our tracking strategy given a position estimate of

the target. Next, we provide an example of how a Kalman

filter with a near-constant velocity target model can be used

to generate the position estimate. Simulations demonstrating

our overall algorithm are presented in Section IV.

The goal of the agents is to avoid obstacles while tracking

the target. To guarantee collision avoidance while tracking,

we propose the agents employ a move-to-centroid controller

using the OAVC tessellation. Proposition 2 demonstrates

under this control strategy, the agents will not collide with

obstacles and other agents.

Proposition 2: For n agents at positions pi, with non-

overlapping starting locations pi(t0) /∈ ZA and OAVC Ai

(7), the controller

ui = kp(CAi − pi) (8)

guarantees pi(t) 	= pj(t), ∀i 	= j and pi(t) /∈ ZA, ∀, t > t0.

Proof: By the properties of Ai, each agent’s cell is

convex. It is known that the centroid of a convex shape lies

inside the convex hull of the shape’s vertices. Thus, at every

time step, the agent will only move within its cell, avoiding

collisions with obstacles and other agents. For agents with

initial positions pi(t0) /∈ ZA, we know that Ai(t0) does

not intersect any obstacles or other agents. Since the agents

will only move within their collision-free safe area, each

subsequent calculation of Ai(t) will never intersect obstacles

Z. Thus, using the controller (8) with initial configurations

pi(t0) /∈ ZA guarantees collision avoidance over time.

By Proposition 2, we know the agents avoid collisions with

obstacles and other agents. However, we do not guarantee

anything about the pursuers “capturing” a target. To present

guarantees on capture, further structure is required on both

the environment and the target dynamics. Instead, we present

a general framework for agents to track static or dynam-

ics targets while avoiding obstacles. For static targets, our

approach provides coverage among obstacles, and by using

the OAVC formulation, increases the covered area of each

agent relative to the Voronoi tessellation. In our simulations,

we also demonstrate that for a moving target, the agents

follow the target through the environment while avoiding

obstacles and the other agents, dynamically adjusting their

coverage configuration. The main steps of our algorithm

are summarized in Algorithm 1. In Algorithm 1, we do

not address how the agents calculate the probability density

function of the target, φT (q). The following sections provides

one example of determining φT (q) using a Kalman filter.

A. Target Estimation with a Kalman Filter

Our tracking strategy proposes that the pursuers only

need an estimate of the target’s position to determine its

probability density function φT (q) and calculate the pursuer

86

Algorithm 1 Distributed Tracking in Clutter

1: Calculate Obstacle-Aware Voronoi Cell Ai

2: Estimate Target Position and Distribution φT (q)
3: Calculate Centroid CAi

4: Move to Centroid ṗi = kp(CAi
− pi)

control law. While the target’s position can be estimated in

many ways, this section highlights one method of calculating

φT (q). Here, the agents estimate the target’s position using

a Kalman filter and a near-constant velocity model of the

target’s movement. We use this example to illustrate how the

pursuers might estimate a target location from observations

and use that in their control law. This model is also used for

the simulations presented in Section IV.

We propose using the Kalman filter to estimate the target’s

location to generate φT (q). Each agent may have its own

estimate of the target, or the agents may share an estimate of

the target. We assume the dynamics of the target are linear

and Gaussian, the measurements are linear and Gaussian,

and the initial distribution of the target’s position is also

Gaussian. We assume a normal distribution for the target’s

position, and update each agent’s estimate of the target’s

mean and covariance matrix. This is consistent with Voronoi-

based coverage control literature, wherein the “information

density function” φT (q) is often generated as a Gaussian

peak [9], [11], [23]. For the target with position pT and

velocity ṗT , define xk = [pT ṗT]
T as the true position and

velocity of the target at time k. We define x̂k as the estimate

of the mean, and Pk as the estimate of the covariance. The

Kalman filter comprises two steps: a prediction step and an

update step. We write the prediction step as [24]

x̂k|k−1 = Fkx̂k−1|k−1,

Pk|k−1 = FkPk−1|k−1F
T
k +Qk,

where Fk is the state-transition model, and Qk is the covari-

ance of the process noise. For a near-constant velocity model

of the target’s movement,

Fk =

⎡
⎢⎢⎣

1 0 t 0
0 1 0 t
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , Qk = q̃

⎡
⎢⎢⎢⎣

t4

4 0 t3

2 0

0 t4

4 0 t3

2
t3

2 0 t2 0

0 t3

2 0 t2

⎤
⎥⎥⎥⎦ .

We also define zk as the measurement model for taking

observations. We write

zk = Hkxk + vk,

where vk ∼ N (0, R) and H = [I 0 | 0 0]. The estimate of

the covariance evolves as

yk = zk −Hkx̂k|k−1,

Sk = HkPk|k−1H
T
k +Rk,

Kk = Pk|k−1H
T
k S

−1
k ,

where Rk is noise in observation and Kk is the optimal

Kalman gain. Overall, the agents update the estimate of the

mean and the covariance as

x̂k|k = x̂k|k−1 +Kkyk,

Pk|k = (I −KkHk)Pk|k−1.

By using the Kalman filter to determine an estimate of

the mean and covariance, the agents then generate the φT (q)
function to determine the centroid of their Obstacle-Aware

Voronoi cell. Algorithm 2 summarizes this procedure, which

is also used in the simulations.

Algorithm 2 Distributed Tracking with Kalman Filter

1: Calculate Obstacle-Aware Voronoi Cell Ai

2: Predict Target’s Next Position

3: Make Observation of Target’s Movement

4: Update Estimate of Target Mean and Covariance

5: Calculate φT (q)
6: Calculate Centroid CAi

7: Move to Centroid ṗi = kp(CAi
− pi)

IV. SIMULATIONS

Simulations run in Matlab demonstrate the performance

of our algorithm. We present two simulation results: first,

an example of a group of agents tracking a moving target.

Next, we include an example where the tracking is limited

by obstacles barricading the environment. Videos of our

simulations are included with the submission of this paper. In

both cases, the obstacles are initialized with random positions

and radii, and obstacles are allowed to overlap. The agents

and target were also assigned random starting positions. The

target moves with a potential field repulsion from the other

agents, with its velocity capped at a fixed speed. To initialize

the Kalman filter for each agent, the robots predict the mean

of the distribution is located in the center of the environment.

Over time, as the robots update their estimate, this converges

to the true location of the target.

A. Moving-Target Tracking

This scenario demonstrates the performance of the agents

tracking a moving target. Here, n = 10 agents track a target

in an environment with m = 30 obstacles. Figure 3 shows

the configuration of all agents and obstacles over time. From

this figure, we see the robots swarm around the target while

simultaneously avoiding all obstacles in the environment.

Figure 4 illustrates the trajectories of the agents and the

target over time. Here, we see that the target, shown as the

red X, is allowed to move freely through the environment,

passing through obstacles at times. We also see that the

trajectories of the agents, illustrated as the black triangles,

avoid all obstacles while following the target.

To analyze the performance of our agents, we examine the

configuration cost (5) over time, shown in Figure 5. Initially,

the agents are not near the target, resulting in a high initial

configuration cost. As the agents track the target over time,

the cost decreases. Since the target can increase its distance

from the agents by entering obstacles, this cost increases

slightly at times. Despite minor fluctuations in the cost, the

87

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

(a)

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

(b)

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

(c)

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

(d)

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

(e)

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

(f)

Fig. 3: Simulation of target tracking for n = 10 pursuers in

an environment with m = 30 obstacles. The shaded regions

indicate safe zones for the pursuers, and the target’s position

is denoted with the green x. Over time, all agents cluster

around the target and track it as it moves.

agents are able to track the target throughout the environment

and reduce the overall configuration cost.

B. Limiting Case

While our algorithm provides strong guarantees against

collision avoidance, if a path from the agents to the target

does not exist, agents may not rendezvous with the target.

To illustrate this limitation, we present a simulation with

n = 7 agents and m = 43 obstacles. Figure 6 shows the

trajectories of the target and agents over time. As shown, a

row of obstacles creates a barricade within the environment.

The agents cluster near the obstacle boundaries, but without

a connecting path between the obstacles, the agents cannot

move to the location of the target.

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

Fig. 4: Trajectories of all agents and target over time.

The agents successfully track the target over time while

simultaneously avoiding obstacles.

0 10 20 30 40 50 60 70 80

Time (sec)

0

1

2

3

4

5

6
C

os
t

104

Fig. 5: Configuration cost over time. As the agents move

closer, the configuration cost decreases. Local spikes in

the cost function are due to the target moving through an

obstacle, allowing it to increase the distance between itself

and the agents. Despite local increases, the cost decreases

again once the target is in free space.

V. CONCLUSION

In this paper, we present a framework for distributed,

online target tracking through a cluttered environment. All

agents are tasked with tracking a target while avoiding ob-

stacles within the environment. We introduce an “Obstacle-

Aware Voronoi Cell” (OAVC), which provides a safe-region

for each agent to plan their control actions. The OAVC

uses dynamics weights between each agent and obstacles to

guarantee an agent’s shared Voronoi boundary is tangent to

the obstacle without intersecting it. Using this OAVC, we

show the agents can successfully track their target using

88

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

Fig. 6: Example scenario where the agents are unable to track

the target. Here, the obstacles in the environment create a

barricade that the agents cannot navigate around.

a move-to-centroid controller. This provides a distributed

control law for all agents, simultaneously moving the agents

closer to the target while guaranteeing collision avoidance.

As an example of using an estimated target position, we use

the example of generating position estimates with a Kalman

filter and near-constant velocity model, demonstrating that

the agents do not need perfect information about the target.

Simulations in Matlab illustrate the effectiveness of our con-

troller for a group of agents tracking a moving target. In our

formulation, we place no restrictions on how the obstacles

are placed in the environment. We present a “soft fail” case

where the obstacles create a barricade in the environment,

demonstrating a current limitation of our controller and an

avenue for future research.

REFERENCES

[1] A. Pierson, A. Ataei, I. C. Paschalidis, and M. Schwager, “Cooperative
multi-quadrotor pursuit of an evader in an environment with no-
fly zones,” in 2016 IEEE International Conference on Robotics and
Automation (ICRA), May 2016, pp. 320–326.

[2] J.-C. Latombe, Robot Motion Planning, ser. The Springer International
Series in Engineering and Computer Science. Springer, 1991.

[3] C. Goerzen, Z. Kong, and B. Mettler, “A survey of motion planning
algorithms from the perspective of autonomous UAV guidance,” Jour-
nal of Intelligent and Robotic Systems, vol. 57, no. 1-4, pp. 65–100,
2010.

[4] C. Schlegel, “Fast local obstacle avoidance under kinematic and
dynamic constraints for a mobile robot,” in Intelligent Robots and
Systems, 1998. Proceedings., 1998 IEEE/RSJ International Conference
on, vol. 1. IEEE, 1998, pp. 594–599.

[5] O. Brock and O. Khatib, “High-speed navigation using the global
dynamic window approach,” in Robotics and Automation, 1999. Pro-
ceedings. 1999 IEEE International Conference on, vol. 1, 1999, pp.
341–346.

[6] J. Minguez and L. Montano, “Nearness diagram (nd) navigation: col-
lision avoidance in troublesome scenarios,” Robotics and Automation,
IEEE Transactions on, vol. 20, no. 1, pp. 45–59, 2004.

[7] P. Ogren and N. E. Leonard, “A convergent dynamic window approach
to obstacle avoidance,” Robotics, IEEE Transactions on, vol. 21, no. 2,
pp. 188–195, 2005.

[8] A. Ataei and I. C. Paschalidis, “Quadrotor deployment for emergency
response in smart cities: A robust mpc approach,” in 2015 54th IEEE
Conference on Decision and Control (CDC), Dec 2015, pp. 5130–
5135.

[9] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control for
mobile sensing networks,” Robotics and Automation, IEEE Transac-
tions on, vol. 20, no. 2, pp. 243–255, 2004.

[10] J. Cortés, “Coverage optimization and spatial load balancing by robotic
sensor networks,” Automatic Control, IEEE Transactions on, vol. 55,
no. 3, pp. 749–754, 2010.

[11] L. Pimenta, M. Schwager, Q. Lindsey, V. Kumar, D. Rus, R. Mesquita,
and G. Pereira, “Simultaneous coverage and tracking (scat) of moving
targets with robot networks,” in Algorithmic Foundation of Robotics
VIII, ser. Springer Tracts in Advanced Robotics, G. Chirikjian,
H. Choset, M. Morales, and T. Murphey, Eds. Springer Berlin
Heidelberg, 2010, vol. 57, pp. 85–99.

[12] S. G. Lee and M. Egerstedt, “Controlled coverage using time-varying
density functions,” in Proc. of the IFAC Workshop on Estimation and
Control of Networked Systems, 2013.

[13] H. Huang, W. Zhang, J. Ding, D. Stipanovic, and C. Tomlin, “Guaran-
teed decentralized pursuit-evasion in the plane with multiple pursuers,”
in Decision and Control and European Control Conference (CDC-
ECC), 2011 50th IEEE Conference on, Dec 2011, pp. 4835–4840.

[14] S. Pan, H. Huang, J. Ding, W. Zhang, D. Stipanovic, and C. Tomlin,
“Pursuit, evasion and defense in the plane,” in American Control
Conference (ACC), 2012, June 2012, pp. 4167–4173.

[15] S.-Y. Liu, Z. Zhou, C. Tomlin, and K. Hedrick, “Evasion as a team
against a faster pursuer,” in American Control Conference (ACC),
2013. IEEE, 2013, pp. 5368–5373.

[16] Z. Zhou, W. Zhang, J. Ding, H. Huang, D. M. Stipanovic, and C. J.
Tomlin, “Cooperative pursuit with voronoi partitions,” Automatica,
vol. 72, pp. 64 – 72, 2016.

[17] A. Pierson, Z. Wang, and M. Schwager, “Intercepting rogue robots:
An algorithm for capturing multiple evaders with multiple pursuers,”
IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 530–537,
April 2017.

[18] S. Bandyopadhyay, S. J. Chung, and F. Y. Hadaegh, “Probabilistic
swarm guidance using optimal transport,” in 2014 IEEE Conference
on Control Applications (CCA), Oct 2014, pp. 498–505.

[19] D. Zhou, Z. Wang, S. Bandyopadhyay, and M. Schwager, “Fast, on-
line collision avoidance for dynamic vehicles using buffered voronoi
cells,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 1047–
1054, April 2017.

[20] F. Bullo, J. Cortés, and S. Martinez, Distributed control of robotic net-
works: a mathematical approach to motion coordination algorithms.
Princeton University Press, 2009.

[21] Z. Drezner, Facility location: a survey of applications and methods,
ser. Springer series in operations research. Springer, 1995.

[22] S. Lee, Y. Diaz-Mercado, and M. Egerstedt, “Multirobot control
using time-varying density functions,” Robotics, IEEE Transactions
on, vol. 31, no. 2, pp. 489–493, April 2015.

[23] M. Schwager, D. Rus, and J.-J. Slotine, “Decentralized, adaptive
coverage control for networked robots,” The International Journal of
Robotics Research, vol. 28, no. 3, pp. 357–375, 2009.

[24] Y. Bar-Shalom and X.-R. Li, Estimation with Applications to Tracking
and Navigation. New York, NY, USA: John Wiley & Sons, Inc., 2001.

89

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

